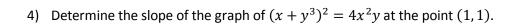
## Section 2.5

1) Find the following:

a) 
$$\frac{d}{dx}[2y^5]$$


b) 
$$\frac{d}{dx}[3y^2 - 4x^2]$$

c) 
$$\frac{d}{dx}[2x^2y^3]$$

## **Guidelines for Implicit differentiation**

- **1.** Differentiate both sides of the equation with respect to x.
- **2.** Collect all terms involving dy/dx on the left side of the equation and move all other terms to the right side of the equation.
- **3.** Factor dy/dx out of the left side of the equation.
- **4.** Solve for dy/dx.
- 2) Find  $\frac{dy}{dx}$  given that  $2y^4 3y^2 + x^2 5x = 6$ .

3) Determine the slope of the tangent line to the graph of  $3x^3 - 2y^3 = x$  at the point (1, 1).



5) Find 
$$\frac{dy}{dx}$$
 for the equation  $\cos y = x$ . Write  $\frac{dy}{dx}$  explicitly as a function of  $x$ .

6) Find 
$$\frac{d^2y}{dx^2}$$
 given that  $x^3 - y^3 = 8$ 

7) Find the tangent line to the graph given by 
$$x^3 + 2xy^2 - y^3 = 11$$
 at the point (2, 1).